Thermal conductance of the water–gold interface: The impact of the treatment of surface polarization in non-equilibrium molecular simulations

Author:

Olarte-Plata Juan D.1ORCID,Bresme Fernando1ORCID

Affiliation:

1. Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ London, United Kingdom

Abstract

Interfacial thermal conductance (ITC) quantifies heat transport across material–fluid interfaces. It is a property of crucial importance to study heat transfer processes at both macro- and nanoscales. Therefore, it is essential to accurately model the specific interactions between solids and liquids. Here, we investigate the thermal conductance of gold–water interfaces using polarizable and non-polarizable models. Both models have been fitted to reproduce the interfacial tension of the gold–water interface, but they predict significantly different ITCs. We demonstrate that the treatment of polarization using Drude-like models, widely employed in molecular simulations, leads to a coupling of the solid and liquid vibrational modes that give rise to a significant overestimation of the ITCs. We analyze the dependence of the vibrational coupling with the mass of the Drude particle and propose a solution to the artificial enhancement of the ITC, preserving at the same time the polarization response of the solid. Based on our calculations, we estimate ITCs of 200 MW/(m2 K) for the water–gold interface. This magnitude is comparable to that reported recently for gold–water interfaces [279 ± 16 MW/(m2 K)] using atomic fluctuating charges to account for the polarization contribution.

Funder

EPSRC

Leverhulme Trust

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3