A phase transition approach to elucidate the propagation of shear waves in viscoelastic materials

Author:

Torres J.12ORCID,Laloy-Borgna G.3ORCID,Rus G.124ORCID,Catheline S.3ORCID

Affiliation:

1. Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada 1 , Granada 18071, Spain

2. TEC-12 group, Instituto de Investigación Biosanitaria, ibs 2 .Granada 18001, Spain

3. LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon 3 , Lyon F-69003, France

4. Excellence Research Unit “ModelingNature” (MNat), Universidad de Granada 4 , Granada 18001, Spain

Abstract

In the field of acoustics, a medium has traditionally been considered a liquid if shear waves cannot propagate. For more complex liquids, such as those containing polymer chains or surfactant aggregates, this definition begins to be unclear. By adopting a rheological model-independent approach, this work investigated by means of dynamic elastography, the liquid–solid phase transitions in viscoelastic liquid media. When the storage shear modulus G′ dominated the loss shear modulus G″, a minimal shear wave attenuation frequency region was defined and the medium was considered solid. When G″ dominated G′, the shear waves were strongly attenuated and the medium was considered liquid. The investigated medium, an aqueous solution of xanthan gum, behaved as a bandpass filter with transition bands, showing liquid–solid–liquid behavior from low to high frequency. During these transitions bands, shear waves still propagated but highly attenuated. The limiting values where shear waves were no longer observed were identified as the low and high cutoff frequencies. Finally, the ability of various rheological models to predict the phase transition frequencies and describe the dispersion curves was tested. A three-element rheological model, the Jeffreys model, was required to accurately fit the experimental response of the medium at different concentrations over the entire frequency range. Shear wave propagation methods can overcome the technical limitations of traditional rheometry and explore higher frequencies, rarely investigated in viscoelastic liquids.

Funder

Ministerio de Ciencia e Innovación

Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía

Ministerio de Educación, Cultura y Deporte

R3-FLI 2022

RHU-V3 2016

ViscOptic project

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3