Numerical investigation on the effect of bionic fish swimming on the vortex-induced vibration of a tandemly arranged circular cylinder

Author:

Zhu HongjunORCID,Li Yingmei,Zhong JiawenORCID,Zhou TongmingORCID

Abstract

The effect of bionic fish swimming on the vortex-induced vibration (VIV) of a circular cylinder arranged in tandem at a low Reynolds number of 150 is numerically investigated in this work. The bionic fish placed upstream of the cylinder with gap ratios of 1, 3, and 5 and that located downstream of the cylinder with gap ratios of 3 and 5 are examined in the simulations that were carried out in the reduced velocity range of Ur = 2–15. It is found that both the gap ratio and the reduced velocity have a significant influence on the VIV response and wake flow structure. When the bionic fish is placed upstream, the maximum response amplitude of the downstream cylinder is much greater than that of an isolated one. Two flow regimes are identified in terms of the shear layer reattachment, i.e., the continuous reattachment and the alternate reattachment. Comparing the vortex shedding frequencies of the cylinder and the swimming fish, it is found that the frequency of the cylinder is always locked in the fish swimming frequency, and multiple frequencies occur at Ur = 5. When the bionic fish is arranged downstream, four flow regimes are observed, including the extended-body, continuous reattachment, alternate attachment, and co-shedding regimes. Furthermore, the time-mean energy transfer coefficient of the cylinder is considerably higher at Ur = 5 than that when the fish is placed upstream of the cylinder.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3