Heat transfer analysis of a pulse-heated microwire in CO2 at supercritical pressures

Author:

Hu Zhan-Chao1ORCID,Wang Gaoyuan1

Affiliation:

1. School of Aeronautics and Astronautics, Sun Yat-sen University, No. 66 Gongchang Road, Guangming District, Shenzhen 518107, People’s Republic of China

Abstract

This paper analyzes the characteristics of convective heat transfer of a pulse-heated platinum microwire cooling in CO2 under supercritical pressures based on experimental data. The microwire undergoes a rapid temperature rise of around 664 K within 0.35 ms. An inverse problem is formulated and numerically solved to extract heat transfer data from experimental measurements. In addition, a predictive model for the convective heat transfer coefficient is developed to fully close the equation set. Results are interpreted based on the bulk pressure from 7.38 to 9 MPa and bulk temperature from 295 to 325 K. The convective heat flux of CO2 generally decreases with time, and in the medium-term, the reduction is slightly decelerated owing to buoyancy-driven flows. This demonstrates that high-pressure and low-temperature bulk states generally exert larger convective heat flux to cool the microwire. During the early 10 ms, the time-averaged convective heat flux is of the order of 1 MW/m2, resulting in rapid cooling. This value shows a weak critical enhancement upon crossing the Widom line. During the remaining time, the time-averaged convective heat flux drops to the order of 0.1 MW/m2. Such a drop in heat flux is more obvious in low-bulk-density cases, leading to a relatively long time for sufficient W cooling.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3