Experimental characterization of a mode-localized acceleration sensor integrating electrostatically coupled resonators

Author:

Lyu Ming1ORCID,Zhao Jian2ORCID,Kacem Najib3ORCID,Wu Rigumala1,Sun Rongjian2ORCID

Affiliation:

1. Institute of Transportation, Inner Mongolia University 1 , Hohhot, China

2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology 2 , Dalian, China

3. Department of Applied Mechanics, University of Franche-Comté, CNRS, FEMTO-ST Institute 3 , Besançon F-25000, France

Abstract

A novel mode-localized acceleration sensor employing an electrostatically coupled resonator and integrating a lever with proof mass is micromachined using standard silicon on insulator (SOI) technology. In order to determine the linear dynamic range of the sensor, a reduced order model is developed while assuming that the resonators vibrate below the critical amplitude. Then, open-loop and closed-loop testing platforms are established to measure the performance of the linearly operating accelerometer in a vacuum environment (less than 5 Pa). Moreover, the corresponding amplifier circuit based on the capacitive detection principle is designed in order to extract and amplify the current signal from the resonators. The obtained results show that the accelerometer sensitivity can be increased by three orders of magnitude when using the relative shift of amplitude ratio as the output metric instead of the relative shift of frequency, and the experimental measurements are consistent with the theoretical predictions. Remarkably, the Allan standard deviation of the mode-localized acceleration sensor obtained from the closed-loop testing circuit is around 5.03 μg.

Funder

Ming lyu

Jian zhao

Najib Kacem

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3