Emerging multi-frequency surface strain force microscopy

Author:

Zeng Qibin12ORCID,Sim Celine2ORCID,Yong Anna Marie2,Hui Hui Kim2,Chen Yunjie2ORCID,Zhang Lei2ORCID,Tan Chee Kiang Ivan2ORCID,Liu Huajun2ORCID,Zeng Kaiyang1ORCID

Affiliation:

1. Department of Mechanical Engineering, National University of Singapore 1 , Singapore 117576, Singapore

2. Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research) 2 , Singapore 138634, Singapore

Abstract

During the past decade, Scanning Probe Microscopy (SPM) based surface strain detection techniques have been extensively used in the characterization of functional materials, structures, and devices. Here, we refer these techniques as Surface Strain Force Microscopy (SSFM), which mainly includes the Piezoresponse Force Microscopy, Atomic Force Acoustic Microscopy, Atomic Force Microscopy-Infrared spectroscopy (or photothermal induced resonance), Piezomagnetic Force Microscopy, and Scanning Joule Expansion Microscopy. The inception of SSFM opens up a pathway to study the nanoscale physical properties by using a sharp tip to detect the local field-induced surface strain. Through measuring the signals of the surface strain, multiple physical properties, such as the electromechanical, mechanical, photothermal, magnetic, thermoelastic properties, can be characterized with an unprecedented spatial resolution. In order to further develop and overcome the fundamental issues and limitations of the SSFM, the multi-frequency SPM technology has been introduced to the SSFM-based techniques, leading to the emerging of multi-frequency SSFM (MF-SSFM). As a technical breakthrough of the SSFM, MF-SSFM has demonstrated substantial improvements in both performance and capability, resulting in increased attentions and numerous developments in recent years. This Perspective is, therefore, aimed at providing a preliminary summary and systematic understanding for the emerging MF-SSFM technology. We will first introduce the basic principles of conventional SSFM and multi-frequency SPM techniques, followed by a detailed discussion about the existing MF-SSFM techniques. MF-SSFM will play an increasingly important role in future nanoscale characterization of the physical properties. As a result, many more advanced and complex MF-SSFM systems are expected in the coming years.

Funder

Ministry of Education, Singapore

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantification of van der Waals forces in bimodal and trimodal AFM;The Journal of Chemical Physics;2023-05-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3