External force attached binding focus of particles and its application

Author:

Xu Du-Chang1ORCID,Tang Xiao-Ying1,Li Ao1ORCID,Ma Jing-Tao2ORCID,Xu Yuan-Qing1ORCID

Affiliation:

1. School of Life Science, Beijing Institute of Technology, Zhongguancun South Street, Beijing 100081, China

2. Aix Marseille Univ, CNRS, Centrale Marseille, M2P2 UMR 7340, Marseille 13451, France

Abstract

The particle focus in the channel flow refers to a randomly initialized particle finally running at an equilibrium position at the channel cross section. The binding focus is a particle focus phenomenon that comprises two adjacent particles (including one rigid and the other soft), where particles can form and share a new equilibrium position. In this study, the result suggests that migrating the rigid particle laterally can lead to a passive migration of the soft. The above phenomenon is termed external force attached binding focus (EFABF). The EFABF is modeled to be three-dimensional using the immersed boundary-lattice Boltzmann method. The inertial focus of a single particle and the binding focus of two particles are numerically confirmed to validate the model. The migrating conditions of the soft particle are mainly discussed to further investigate the conditions of EFABF. Two patterns to migrate the soft particle are observed, including rigid particle ahead and soft particle ahead. The Reynolds number of 10 is proposed, which can apply to EFABF to obtain a significant migration scope. Moreover, the mechanism of EFABF is further analyzed to gain more insight into EFABF. Finally, as its application, a label-free single-cell separation architecture is designed by replacing the soft particle with a spherical circulating tumor cell and magnetically manipulating the rigid particle. The numerical results suggest that the soft particle (cell) can be well driven to stride over streamlines and form a new equilibrium position by migrating the rigid particle, thus making the separation pathway well-controlled.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3