Predicting new potential antimalarial compounds by using Zagreb topological indices

Author:

Brito Daniel1,Marquez Edgar2ORCID,Rosas Felix3,Rosas Ennis4

Affiliation:

1. Departamento de Matemáticas, Universidad de Oriente, Núcleo de Sucre, Cumana, Venezuela

2. Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Exactas, Universidad del Norte, Carrera 51B, Km 5, vía Puerto Colombia, Barranquilla 081007, Colombia

3. Laboratorio de Fisicoquímica Orgánica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela

4. Departamento de Ciencias Naturales y Exactas, Universidad de la Costa, Barranquilla, Colombia

Abstract

Molecular topology allows describing molecular structures following a two-dimensional approach by taking into account how the atoms are arranged internally through a connection matrix between the atoms that are part of a structure. Various molecular indices (unique for each molecule) can be determined, such as Zagreb, Balaban, and topological indices. These indices have been correlated with physical chemistry properties such as molecular weight, boiling point, and electron density. Furthermore, their relationship with a specific biological activity has been found in other reports. Therefore, its knowledge and interpretation could be critical in the rational design of new compounds, saving time and money in their development process. In this research, the molecular graph of antimalarials already in the pharmaceutical market, such as chloroquine, primaquine, quinine, and artemisinin, was calculated and used to compute the Zagreb indices; a relationship between these indices and the antimalarial activities was found. According to the results reported in this work, the smaller the Zagreb indices, the higher the antimalarial activity. This relationship works very well for other compounds series. Therefore, it seems to be a fundamental structural requirement for this activity. Three triazole-modified structures are proposed as possible potential antimalarials based on this hypothesis. Finally, this work shows that the Zagreb indices could be a cornerstone in designing and synthesizing new antimalarial compounds, albeit they must be proved experimentally.

Funder

Universidad del Norte

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference59 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3