Acoustic three-terminal controller with amplitude control for nonlinear seismic metamaterials

Author:

Li Yuanyuan1,Liu Jiancheng1,Deng Zhaoyu1,Gong Menyang1ORCID,Huang Kunqi1,Lai Yun1ORCID,Liu Xiaozhou12ORCID

Affiliation:

1. Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

2. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

To design and optimize seismic metamaterials, the impacts of nonlinearity in different locations of locally resonant acoustic metamaterials on the dispersions and the variation of amplitude-dependent bandgaps are investigated in this paper. The research used theoretical calculations, namely, Lindstedt–Poincaré perturbation method and prediction method, and combined finite-element simulation. Summarizing from our research, the lower bandgap is sensitive when exposed to amplitude stimulation, when there arise nonlinear characteristics between matrices; while nonlinearity appears within the interior oscillator, amplitudes obtain a more intense influence on the bandgap, introducing an enormous magnitude of deviation between the upper bandgap and the lower bandgap. Based on the peculiar frequency-shift characteristics, an acoustic three-terminal controller is proposed as a conventional subsize acoustical device and nonlinear seismic metamaterials component. This controller enables the realization of modulating the value of output signals by adjusting the quantitative loading on the control port, without changing the input signals and the parameters of the apparatus validated with the finite-element simulation. The work may offer potential applications in low-frequency vibration reduction and external-controllable multi-functional acoustical devices.

Funder

National Key Research and Development Program of China

State Key Program of National Natural Science of China

National Natural Science of China

State Key Laboratory of Acoustics, Chinese Academy of Sciences

Key Laboratory of Underwater Acoustic Enviroment, Chinese Academy of Sciences

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3