Inverse design machine learning model for metallic glasses with good glass-forming ability and properties

Author:

Li K. Y.12ORCID,Li M. Z.12ORCID,Wang W. H.345ORCID

Affiliation:

1. Department of Physics and Beijing Key Laboratory of Opto-Electronic Functional Materials & Micro-Nano Devices, Renmin University of China 1 , Beijing 100872, China

2. Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China 2 , Beijing 100872, China

3. Institute of Physics, Chinese Academy of Sciences 3 , 100190 Beijing, China

4. Songshan Lake Materials Laboratory 4 , Dongguan, Guangdong 523808, China

5. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences 5 , Beijing 100049, China

Abstract

The design of metallic glasses (MGs) with good properties is one of the long-standing bottlenecks in materials science and engineering, which has been relying mostly on far less efficient traditional trial-and-error methods. Even the currently popular machine learning-based forward designs, which use manual input to navigate high dimensional compositional space, often become inefficient with the increasing compositional complexity in MGs. Here, we developed an inverse design machine learning model, leveraging the variational autoencoder (VAE), to directly generate the MGs with good glass-forming ability (GFA). We demonstrate that our VAE with the property prediction model is not only an expressive generative model but also able to do accurate property prediction. Our model allows us to automatically generate novel MG compositions by performing simple operations in the latent space. After randomly generating 3000MG compositions using the model, a detailed analysis of four typical metallic alloys shows that unreported MG compositions with better glass-forming ability can be predicted. Moreover, our model facilitates the use of powerful optimization algorithms to efficiently guide the search for MGs with good GFA in the latent space. We believe that this is an efficient way to discover MGs with excellent properties.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3