Entanglement-invertible channels

Author:

Verdon Dominic1ORCID

Affiliation:

1. School of Mathematics, University of Bristol , Bristol BS8 1UG, United Kingdom

Abstract

In a well-known result [R. Werner, J. Phys. A: Math. Gen. 34(35), 7081 (2001)], Werner classified all tight quantum teleportation and dense coding schemes, showing that they correspond to unitary error bases. Here tightness is a certain dimensional restriction: the quantum system to be teleported and the entangled resource must be of dimension d, and the measurement must have d2 outcomes. Here we generalise this classification so as to remove the dimensional restriction altogether, thereby resolving an open problem raised in that work. In fact, we classify not just teleportation and dense coding schemes, but entanglement-reversible channels. These are channels between finite-dimensional C*-algebras which are reversible with the aid of an entangled resource state, generalising ordinary reversibility of a channel. We show that such channels correspond to families of linear maps which are bi-isometric with respect to a duality defined by the resource state. In particular, in Werner’s classification, a bijective correspondence between tight teleportation and dense coding schemes was shown: swapping Alice and Bob’s operations turns a teleportation scheme into a dense coding scheme and vice versa. We observe that this property generalises ordinary invertibility of a channel; we call it entanglement-invertibility. We show that entanglement-invertible channels are precisely the quantum bijections previously studied in noncommutative topology [B. Musto et al., J. Math. Phys. 59(8), 081706 (2018)], and therefore admit a classification in terms of Wang’s quantum permutation group [S. Wang, Commun. Math. Phys. 195, 195–211 (1998)].

Funder

Engineering and Physical Sciences Research Council

Horizon 2020 Framework Program

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3