Dynamics of cascades in spatial interdependent networks

Author:

Gross Bnaya1ORCID,Bonamassa Ivan2ORCID,Havlin Shlomo1ORCID

Affiliation:

1. Department of Physics, Bar-Ilan University 1 , 52900 Ramat-Gan, Israel

2. Department of Network and Data Science, CEU 2 , Quellenstrasse 51, 1100 Vienna, Austria

Abstract

The dynamics of cascading failures in spatial interdependent networks significantly depends on the interaction range of dependency couplings between layers. In particular, for an increasing range of dependency couplings, different types of phase transition accompanied by various cascade kinetics can be observed, including mixed-order transition characterized by critical branching phenomena, first-order transition with nucleation cascades, and continuous second-order transition with weak cascades. We also describe the dynamics of cascades at the mutual mixed-order resistive transition in interdependent superconductors and show its similarity to that of percolation of interdependent abstract networks. Finally, we lay out our perspectives for the experimental observation of these phenomena, their phase diagrams, and the underlying kinetics, in the context of physical interdependent networks. Our studies of interdependent networks shed light on the possible mechanisms of three known types of phase transitions, second order, first order, and mixed order as well as predicting a novel fourth type where a microscopic intervention will yield a macroscopic phase transition.

Funder

Israel Science Foundation

United States-Israel Binational Science Foundation

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference51 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3