On the drag reduction of an inclined wing via microstructures with the immersed boundary-lattice Boltzmann flux solver

Author:

Chen Guo-QingORCID,Du ZengzhiORCID,Li HongyuanORCID,Lv PengyuORCID,Duan HuilingORCID

Abstract

Flow separation control has a wide application prospect in drag reduction for industry. This paper numerically studies the effect of microstructures on flow separation and drag reduction. Simple morphological microstructures, derived from the tilted shark scales, are attached to the wing at an angle of attack. The spacing and height of microstructures are made dimensionless by using the microstructure width and half of the wing width, respectively, that is, d̃m=dm/dAB and h̃m=hm/(H/2). The angle of attack is set to 10°. It is found that microstructures can reduce the motion amplitude of shed vortices, thereby suppressing flow separation and reducing drag. Both the planar and curved microstructures have excellent drag reduction performance. The microstructure spacing d̃m and tilt angle θ should not be too large or too small; otherwise, it will weaken the drag reduction ability. Cases d̃m=1.51, θ=20°, and θ=30° exhibit excellent drag reduction performance. The microstructure has the characteristic for being small, yet it needs to reach a certain height h̃m to effectively reduce drag. The case h̃m=0.667 is the most superior choice. Based on the proposed microstructure shape and spacing, the drag reduction performance of microstructures can reach more than 28%. Meanwhile, the drag reduction performance of microstructures increases with the improvement of the attachment proportion pm, and case pm≥50% is suggested for significant drag reduction performance. Finally, we discuss the drag reduction performance of microstructures on the wing at different angles of attack and find that microstructures can achieve good drag reduction, provided that the pressure drag caused by the flow separation is a significant proportion of the total drag and the flow separation occurs within the controllable range of microstructures.

Funder

National Natural Science Foundation of China

Laoshan Laboratory

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference74 articles.

1. Drag reduction in nature;Annu. Rev. Fluid Mech.,1991

2. A review on the drag reduction methods of the ship hulls for improving the hydrodynamic performance;Int. J. Marit. Eng.,2015

3. A review of turbulent skin-friction drag reduction by near-wall transverse forcing;Prog. Aerosp. Sci.,2021

4. A unified theory for bubble dynamics;Phys. Fluids,2023

5. Separation control—Review;ASME J. Fluids Eng.,1991

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3