Error analysis and correction for three-dimensional scaled physical experiments on landslide-induced impulse waves

Author:

Chen Yunfei,Huang BolinORCID,Qin Zhen,Dong XingchenORCID,Hu Liuyang,Li Qiuwang,Cheng Shulou,Li Renjiang,Yin Yueping

Abstract

Large-scale three-dimensional (3D) physical modeling is an important method to study landslide-induced impulse waves. In such models, the test randomness is often quite high, which necessitates systematic exploration of the randomness and error. However, only a few relevant studies have been conducted yet. To this end, this study aims to investigate the randomness and error of large-scale 3D landslide-induced impulse wave experiments and provide solutions to the different sources of error. Based on six repeatability experiments with the large-scale 3D physical model of the Wangjiashan landslide-induced impulse wave in the Baihetan reservoir of the Jinsha River, China, the errors of typical physical parameters are classified into systematic errors, which originate from instrumental factors, experimental design, observer bias, environmental factors, and random errors originating from communication and observation. The allowable error rate of landslide motion in the repeatability experiment is found to be 5%, but the dynamic chain transmission of landslide-induced impulse waves leads to the transmission and accumulation of errors, which causes a gradual increase in the errors of landslide motion, primary wave, propagating wave, and run-up process; and the coefficient of variation increases from approximately 3.8% to 25.0%. To reduce the experimental data error, a low-pass filtering model for removing high-frequency noise and a moving window smoothing model for image frame rate mutation are established, which can decrease the coefficient of variation by nearly 1.3%–4.0%. The corrected particle dynamic map exhibits a continuous and smooth flow field, which basically eliminates the velocity field mutation and discontinuity caused by communication data packet loss. Overall, this study can provide theoretical basis and technical support for large-scale 3D landslide-induced impulse wave experiments.

Funder

National Natural Science Foundation of China

China Three Gorges Corporation

Research Project of Chongqing Planning and Natural Resources Bureau, China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3