Investigation of atomic layer deposition methods of Al2O3 on n-GaN

Author:

Tadmor Liad1ORCID,Vandenbroucke Sofie S. T.2ORCID,Bahat Treidel Eldad1ORCID,Brusaterra Enrico1ORCID,Plate Paul3ORCID,Volkmer Nicole1,Brunner Frank1ORCID,Detavernier Christophe2ORCID,Würfl Joachim1ORCID,Hilt Oliver1ORCID

Affiliation:

1. Ferdinand-Braun-Institut (FBH) 1 , Gustav Kirchhoff Str. 4, Berlin 12489, Germany

2. Department of Solid State Sciences, CoCooN Group, Ghent University 2 , Krijgslaan 281/S1, Ghent 9000, Belgium

3. Plasma Process Technology Department, SENTECH Instruments GmbH 3 , Berlin 12489, Germany

Abstract

In this work, three atomic layer deposition (ALD) approaches are used to deposit an Al2O3 gate insulator on n-GaN for application in vertical GaN power switches: thermal ALD (ThALD), plasma-enhanced ALD (PEALD), and their stacked combination. The latter is a novel method to yield the most ideal insulating layer. Also, the influence of an in situ NH3 or H2 plasma pre-treatment is studied. Planar MIS capacitors are used to investigate the electrical properties and robustness of the gate insulators. In vacuo x-ray photoelectron spectroscopy (XPS) is used to study the changes in chemical composition after every surface treatment. XPS shows that all plasma pre-treatments efficiently remove all carbon contamination from the surface, but only NH3 plasma is observed to additionally remove the native oxide from the n-GaN surface. The water precursor step in the ThALD process does not completely remove the CH3 ligands of the trimethylaluminum precursor step, which might electrically be associated with a reduced forward bias robustness. The O2 plasma step in the PEALD process is associated with the removal of carbon and a tremendous increase of the O content in the GaN surface region. Electrically, this strongly correlates to an enhanced forward bias robustness and an increased forward bias hysteresis, respectively. The ThALD/PEALD stack method mitigates the shortcomings of both ALD processes while maintaining its advantages. Electrical measurements indicate that the stack method alongside NH3 plasma pretreatment provides the best characteristics in terms of hysteresis, threshold voltage, forward bias robustness, and interface trap density of states.

Funder

Key Digital Technologies Joint Undertaking

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3