A thin metallo-dielectric stacked metamaterial as “add-on” for magnetic field enhancement in clinical MRI

Author:

Das Priyanka12ORCID,Gupta Jegyasu1ORCID,Sikdar Debabrata1,Bhattacharjee Ratnajit1

Affiliation:

1. Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India

2. iHUB Divyasampark, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India

Abstract

Magnetic resonance imaging (MRI) is a widely used clinical diagnostic tool, which is based on the principle of nuclear magnetic resonance of hydrogen atoms in human body. The Larmor frequency of precession of the hydrogen atoms is determined by the strength of static magnetic field ( B0) of MRI. A higher B0 can directly improve signal-to-noise ratio (SNR) of MRI. However, this method involves expensive hardware installation, which could have adverse effects of tissue-heating and make MRI unsafe for patients with medical implants. Hence, efforts have been made to increase the SNR of MRI without increasing B0. An effective solution in this direction would be to boost the radiofrequency (RF) magnetic fields emitted by the body part undergoing scan, particularly by using metamaterials. The higher the received RF signal strength, the greater the SNR of MRI. For a metamaterial to be used as an “add-on” in commercial scanners, its dimensions need to be designed appropriately so that it fits in the available gap between the transceiver coil and the human body. In this article, a 10-mm-thick metallo-dielectric metamaterial is designed by a stacking of alternate square-shaped capacitive patches and inductive apertures for enhancing the RF magnetic flux density and hence, the SNR of a 1.5 T MRI system. The inter-layer electromagnetic coupling in the stacked structure is deployed for spatial localization of magnetic fields at the resonant frequency (∼64 MHz) which is equal to the Larmor frequency of 1.5 T MRI. An equivalent circuit model, comprising a lumped-element third order bandpass filter, validated the transmissivity characteristics of the metamaterial obtained using full-wave simulations. Magnetic flux density enhancement by a factor of 55 is obtained when the metamaterial add-on is placed between a surface coil and a bio-model of human head.

Funder

iHUB Divyasampark, IIT Roorkee

Ministry of Education, Government of India

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3