A physics-constrained neural network for multiphase flows

Author:

Zheng Haoyang1ORCID,Huang Ziyang2ORCID,Lin Guang13ORCID

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA

2. Mechanical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109, USA

3. Department of Mathematics, Purdue University, West Lafayette, Indiana 47907, USA

Abstract

The present study develops a physics-constrained neural network (PCNN) to predict sequential patterns and motions of multiphase flows (MPFs), which includes strong interactions among various fluid phases. To predict the order parameters, which locate individual phases in the future time, a neural network (NN) is applied to quickly infer the dynamics of the phases by encoding observations. The multiphase consistent and conservative boundedness mapping algorithm (MCBOM) is next implemented to correct the predicted order parameters. This enforces the predicted order parameters to strictly satisfy the mass conservation, the summation of the volume fractions of the phases to be unity, the consistency of reduction, and the boundedness of the order parameters. Then, the density of the fluid mixture is updated from the corrected order parameters. Finally, the velocity in the future time is predicted by another NN with the same network structure, but the conservation of momentum is included in the loss function to shrink the parameter space. The proposed PCNN for MPFs sequentially performs (NN)-(MCBOM)-(NN), which avoids nonphysical behaviors of the order parameters, accelerates the convergence, and requires fewer data to make predictions. Numerical experiments demonstrate that the proposed PCNN is capable of predicting MPFs effectively.

Funder

Division of Mathematical Sciences

Brookhaven National Laboratory

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3