Fully quantum calculations of the line shape parameters for 1-0 P(22) and P(31) lines of CO perturbed by He or Ar

Author:

Chai Shijie1,Chen Qixin1,Yang Dongzheng2ORCID,Zhou Yanzi1ORCID,Xie Daiqian1ORCID

Affiliation:

1. Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

2. Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA

Abstract

This work reports the full quantum calculations of the spectral line shape parameters for the P(22) line of 13CO and the P(31) line of 12CO in the fundamental band perturbed by He or Ar from 20 to 1000 K for the first time. The generalized spectroscopic cross sections of CO–He/Ar indicate that the Dicke narrowing effect competes with the pressure broadening effect. The pressure broadening can be explained by the dynamic behaviors of intermolecular collisions. The intermolecular inelastic collisions contribute more than 95% to the pressure broadening in both CO–He and CO–Ar systems at high temperatures. Regarding the state-to-state inelastic contributions to pressure broadening, the maximum contribution out of the final state of a given line is close to that out of the initial state. The Dicke narrowing effect influences the line shape profile significantly at high temperatures, which suggests that it is indispensable for reproducing the spectral line profile. With the Dicke narrowing effect, the calculated pressure-broadening coefficients and spectral intensity distribution are in good agreement with the available experimental observations.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3