Numerical study of heat transfer, flow fields, turbulent length scales, and anisotropy in corrugated heat exchanger channels

Author:

Karlsson G.12ORCID,Fureby C.1ORCID,Wang L.1ORCID,Norberg C.1,Holm M.2,Strömer F.2

Affiliation:

1. Lund University, Department of Energy Sciences, P.O. Box 118, SE-221 00 Lund, Sweden

2. Alfa Laval Technologies AB, SE-221 00 Lund, Sweden

Abstract

In this study, we report on large eddy simulation (LES) of convectively dominated heat transfer in a corrugated heat exchanger channel using the computational fluid dynamics toolbox, OpenFOAM. A chevron pattern domain with 63 contact points is used to represent the conditions in a real plate heat exchanger (PHE). The unsteady nature of the flow is elucidated using visualization techniques based on volume rendering of temperature and iso surfaces of vorticity defined using the λ2-criterion and contours of wall shear stress and wall heat flux to illustrate the heat transfer process. Global surface averaged temperature and pressure drop are extracted from the LES on successively finer grids, approaching direct numerical simulation resolution, to increase the understanding of grid resolution requirements for LES in PHEs. Industry standard Reynolds-averaged Navier–Stokes simulations are compared to the LES results along selected profiles to demonstrate similarities and differences between the two techniques. The differences detected are further investigated using anisotropy invariant mapping, energy spectra, and turbulence length scale distributions. Significant differences between the model classes are detected and detailed. Moreover, the LES resolution requirements for the flow and the heat transfer processes are found to be different with the latter being more severe.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3