Effect of rf driving frequency on peripheral high energy electrons in a magnetically expanding plasma reactor

Author:

Nakul Thanatith1,Nakahama Yugo1,Takahashi Kazunori12ORCID

Affiliation:

1. Department of Electrical Engineering, Tohoku University 1 , Sendai 980-08579, Japan

2. National Institute for Fusion Science 2 , Toki 509-5292, Japan

Abstract

Two operational rf driving frequencies of 2 and 13.56 MHz are employed in a 14-cm-diameter radio frequency (rf) plasma source under an expanding magnetic field. The changes in the radial profiles of the ion saturation current and the electron temperature are observed in the magnetically expanding plasma when changing the driving frequency. Peripheral high temperature electrons are detected for the higher frequency case, which is consistent with previous studies, implying a localized electron heating in the radially outer region near the antenna and a transport along the magnetic field. However, it disappears when lowering the rf driving frequency, which would be due to an increase in a skin depth. Therefore, the present results demonstrate that the rf power would be absorbed in radially outer and entire regions of the discharge tube for the higher and lower rf driving frequency cases, respectively. As a result of the ionization induced by the peripheral high temperature electrons in the expanding magnetic field, the density in the expanding magnetic field for the 13.56 MHz case is higher than the 2 MHz case, resulting in the larger thrust as measured by a pendulum target technique.

Funder

Japan Society for the Promotion of Science

Fusion Oriented REsearch for Disruptive Science and Technology

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3