Material dependent soliton interaction dynamics in highly nonlinear fibers: A phase evolution study

Author:

Roy Abhisek1ORCID,Roy Chaudhuri Partha1ORCID

Affiliation:

1. Department of Physics, IIT Kharagpur , West Bengal 721302, India

Abstract

We investigate the propagation characteristics of two temporally separated soliton pulses with the same spectra, under the influence of stimulated Raman scattering, within a single-mode optical fiber. This analysis explores the behavior of the interacting solitons while propagating in different chalcogenide materials, exhibiting new features and promising prospects for soliton transmission in optical communication systems. Our study included all the interaction parameters constituting the nonlinear Schrödinger equation (NLSE). We have examined the relationship between the Kerr nonlinearity, interpulse and intrapulse Raman effects, and material-dependent collision length featuring a key aspect in logic design and phase control in mode-locking systems. We have also systematically shown the manifestation of the Raman response function from the Raman gain curve, which our mathematical model (the Lorentzian model) provides, that exhibits a near agreement with experimental data. Our findings reveal significant differences from the typical behavior of two-soliton interaction only due to Kerr nonlinearity. Furthermore, we have investigated the mechanism of the net energy transfer between the interacting solitons as an integral phenomenon involved in multiple soliton propagation. These results provide an insightful understanding of the associated nonlinear effects in high-power soliton transmission systems and are foreseen to possess the potential for designing advanced optical switches and mode-locked lasers.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3