A novel generative–predictive data-driven approach for multi-objective optimization of horizontal axis tidal turbine

Author:

Xia TianshunORCID,Wang LongyanORCID,Xu JianORCID,Yuan JianpingORCID,Luo ZhaohuiORCID,Wang Zilu

Abstract

Tidal turbines play a critical role in converting the kinetic energy of water into electricity, contributing significantly to energy conversion. However, the current optimization design of these turbines involves computationally intensive simulations, leading to higher design costs. Additionally, traditional parameterized modeling methods, constrained by predefined design parameters, limit the exploration of innovative designs. In response, this study introduces an innovative data-driven “generative–predictive” design approach comprising a generative model and a predictive model. The generative model autonomously learns feature representations from existing turbines and leverages this knowledge to generate a novel set of turbines with superior hydrodynamic performance. Subsequently, an efficient performance evaluation is conducted using a predictive model for the generated turbines. Compared to the current parameterized modeling approaches, the proposed approach is combined with multi-objective optimization algorithm to optimize the tidal turbine hydrodynamic performance. Research results demonstrate that the generative model, trained on gradients, can generate highly complex turbines with minimal latent vectors. Through transfer learning, the predictive model exhibits robustness and accuracy, effectively guiding the design process. In the final optimization comparison, the proposed generative–predictive design approach requires only 4% of the optimization time while achieving results similar to or surpassing traditional design approaches. This approach proves to be a powerful tool for guiding the efficient and optimized design of turbines.

Funder

National Natural Science Foundation of China

Postdoctoral Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Publisher

AIP Publishing

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3