Thermochemistry and mechanisms of the Pt+ + SO2 reaction from guided ion beam tandem mass spectrometry and theory

Author:

Armentrout P. B.1ORCID

Affiliation:

1. Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112, USA

Abstract

The kinetic energy dependences of the reactions of Pt+ (2D5/2) with SO2 were studied using a guided ion beam tandem mass spectrometer and theory. The observed cationic products are PtO+ and PtSO+, with small amounts of PtS+, all formed in endothermic reactions. Modeling the kinetic energy dependent product cross sections allows determination of the product bond dissociation energies (BDEs): D0(Pt+–O) = 3.14 ± 0.11 eV, D0(Pt+–S) = 3.68 ± 0.31 eV, and D0(Pt+–SO) = 3.03 ± 0.12 eV. The oxide BDE agrees well with more precise literature values, whereas the latter two results are the first such measurements. Quantum mechanical calculations were performed for PtO+, PtS+, PtO2+, and PtSO+ at the B3LYP and coupled-cluster with single, double, and perturbative triple [CCSD(T)] levels of theory using the def2-XZVPPD (X = T, Q) and aug-cc-pVXZ (X = T, Q, 5) basis sets and complete basis set extrapolations. These theoretical BDEs agree well with the experimental values. After including empirical spin–orbit corrections, the product ground states are determined as PtO+ (4Σ3/2), PtS+ (4Σ3/2), PtO2+ (2Σg+), and PtSO+ (2A′). Potential energy profiles including intermediates and transition states for each reaction were also calculated at the B3LYP/def2-TZVPPD level. Periodic trends in the thermochemistry of the group 9 metal chalcogenide cations are compared, and the formation of PtO+ from the Pt+ + SO2 reaction is compared with those from the Pt+ + O2, CO2, CO, and NO reactions.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3