Operating regimes of a constricted arc discharge in a forevacuum-pressure, plasma-cathode electron source of pulsed large-radius electron beams

Author:

Kazakov Andrey V.1ORCID,Oks Efim M.12ORCID,Panchenko Nikolay A.1ORCID

Affiliation:

1. Tomsk State University of Control Systems and Radioelectronics, 634050 Tomsk, Russia

2. Institute of High Current Electronics RAS, 634055 Tomsk, Russia

Abstract

We have investigated the operating regimes of a pulsed constricted arc discharge in a forevacuum plasma-cathode electron source of large-radius electron beams. The configuration of the intermediate electrode (IE) with a constricting channel (CC) determines the maximum parameters (current and pulse duration) and operating regimes of the constricted arc. An IE with ceramic (aluminum nitride) CC and an IE with sectional tantalum CC, formed by several electrically insulated tantalum disks with co-axial holes, lead to an increase in the maximum parameters compared to an IE with metal CC. In particular, an IE with sectional tantalum CC provides the highest maximum parameters. The ceramic and sectional tantalum constricting channels also provide lower minimum pressure for which the constricted arc operates stably. When the pressure reaches a certain threshold value, which depends on arc current, a discharge system with IE with sectional tantalum CC provides stable operation for pulse duration up to 10 ms. An increase in pressure provides higher discharge current in the millisecond regime of the discharge operation. When the arc current reaches threshold values from 84 to 92 A (depending on gas pressure), a self-compressed (pinched) mode of operation of the constricted arc occurs. The pinched arc regime is characterized by the highest current and the longest pulse duration. The forevacuum electron source based on the constricted arc discharge with IE with sectional tantalum CC offers generation of low-energy (up to 8 keV) electron beam with current up to tens of amperes and pulse duration up to 10 ms.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3