Non-volatile materials for programmable photonics

Author:

Fang Zhuoran1ORCID,Chen Rui1ORCID,Tossoun Bassem2ORCID,Cheung Stanley2ORCID,Liang Di2ORCID,Majumdar Arka3ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Washington 1 , Seattle, Washington 98195, USA

2. Hewlett Packard Labs, Hewlett Packard Enterprise 2 , Milpitas, California 95305, USA

3. Department of Physics, University of Washington 3 , Seattle, Washington 98195, USA

Abstract

Programmable photonics play a crucial role in many emerging applications, from optical accelerators for machine learning to quantum information technologies. Conventionally, photonic systems are tuned by mechanisms such as the thermo-optic effect, free carrier dispersion, the electro-optic effect, or micro-mechanical movement. Although these physical effects allow either fast (>100 GHz) or large contrast (>60 dB) switching, their high static power consumption is not optimal for programmability, which requires only infrequent switching and has a long static time. Non-volatile materials, such as phase-change materials, ferroelectrics, vanadium dioxide, and memristive metal oxide materials, can offer an ideal solution thanks to their reversible switching and non-volatile behavior, enabling a truly “set-and-forget” programmable unit with no static power consumption. In recent years, we have indeed witnessed the fast adoption of non-volatile materials in programmable photonic systems, including photonic integrated circuits and free-space meta-optics. Here, we review the recent progress in the field of programmable photonics, based on non-volatile materials. We first discuss the material’s properties, operating mechanisms, and then their potential applications in programmable photonics. Finally, we provide an outlook for future research directions. The review serves as a reference for choosing the ideal material system to realize non-volatile operation for various photonic applications.

Funder

National Science Foundation

Office of Naval Research

Defense Sciences Office, DARPA

Intel Labs

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3