Affiliation:
1. HPCAT, X-ray Science Division, Argonne National Laboratory , Lemont, Illinois 60439, USA
Abstract
The diamond anvil cell (DAC) has been widely used in high-pressure research. Despite significant progress over the past five decades, the opposed anvil geometry in the DAC inevitably leads to a disk-shaped sample configuration at high pressure. This intrinsic limitation is largely responsible for the large pressure and temperature gradients in the DAC, which often compromise precise experiments and their characterizations. We designed and fabricated a multi-axis diamond anvil cell (MDAC) by adopting the concept of a multi-anvil apparatus but using single crystal diamonds as the anvil material. Preliminary data show that the MDAC can generate extreme pressure conditions above 100 GPa. The advantages of the MDAC over a traditional opposed anvil DAC include thicker, voluminous samples, quasi-hydrostatic, or designed deviatoric stress conditions, and multidirectional access windows for optical applications and x-ray probes. In this article, we present the design and performance of a prototype MDAC, as well as the application prospects in high-pressure research.
Funder
DOE NNSA’s Office of Experimental Sciences
Basic Energy Sciences
Division of Earth Sciences