Fluorescence in quantum dynamics: Accurate spectra require post-mean-field approaches

Author:

Bustamante Carlos M.1ORCID,Gadea Esteban D.1ORCID,Todorov Tchavdar N.2ORCID,Horsfield Andrew3ORCID,Stella Lorenzo45ORCID,Scherlis Damian A.1ORCID

Affiliation:

1. Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires 1 , Buenos Aires C1428EHA, Argentina

2. Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen’s University Belfast 2 , Belfast BT7 1NN, United Kingdom

3. Department of Materials, Thomas Young Centre, Imperial College London, South Kensington Campus 3 , London SW7 2AZ, United Kingdom

4. Centre for Light-Matter Interactions, School of Mathematics and Physics, Queen’s University Belfast 4 , Belfast BT7 1NN, United Kingdom

5. School of Chemistry and Chemical Engineering, Queen’s University Belfast 5 , Belfast BT9 5AG, United Kingdom

Abstract

Real time modeling of fluorescence with vibronic resolution entails the representation of the light–matter interaction coupled to a quantum-mechanical description of the phonons and is therefore a challenging problem. In this work, taking advantage of the difference in timescales characterizing internal conversion and radiative relaxation—which allows us to decouple these two phenomena by sequentially modeling one after the other—we simulate the electron dynamics of fluorescence through a master equation derived from the Redfield formalism. Moreover, we explore the use of a recent semiclassical dissipative equation of motion [C. M. Bustamante et al., Phys. Rev. Lett. 126, 087401 (2021)], termed coherent electron electric-field dynamics (CEED), to describe the radiative stage. By comparing the results with those from the full quantum-electrodynamics treatment, we find that the semiclassical model does not reproduce the right amplitudes in the emission spectra when the radiative process involves the de-excitation to a manifold of closely lying states. We argue that this flaw is inherent to any mean-field approach and is the case with CEED. This effect is critical for the study of light–matter interaction, and this work is, to our knowledge, the first one to report this problem. We note that CEED reproduces the correct frequencies in agreement with quantum electrodynamics. This is a major asset of the semiclassical model, since the emission peak positions will be predicted correctly without any prior assumption about the nature of the molecular Hamiltonian. This is not so for the quantum electrodynamics approach, where access to the spectral information relies on knowledge of the Hamiltonian eigenvalues.

Funder

Agencia Nacional de Promoción Científica y Tecnológica

Thomas Young Center

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3