Membrane potential sensing: Material design and method development for single particle optical electrophysiology

Author:

Roy Debjit12ORCID,Shapira Zehavit34ORCID,Weiss Shimon1345ORCID

Affiliation:

1. Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA

2. UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California 90095, USA

3. Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

4. Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel

5. California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, USA

Abstract

We review the development of “single” nanoparticle-based inorganic and organic voltage sensors, which can eventually become a viable tool for “non-genetic optogenetics.” The voltage sensing is accomplished with optical imaging at the fast temporal response and high spatial resolutions in a large field of view. Inorganic voltage nanosensors utilize the Quantum Confined Stark Effect (QCSE) to sense local electric fields. Engineered nanoparticles achieve substantial single-particle voltage sensitivity (∼2% Δλ spectral Stark shift up to ∼30% ΔF/F per 160 mV) at room temperature due to enhanced charge separation. A dedicated home-built fluorescence microscope records spectrally resolved images to measure the QCSE induced spectral shift at the single-particle level. Biomaterial based surface ligands are designed and developed based on theoretical simulations. The hybrid nanobiomaterials satisfy anisotropic facet-selective coating, enabling effective compartmentalization beyond non-specific staining. Self-spiking- and patched-HEK293 cells and cortical neurons, when stained with hybrid nanobiomaterials, show clear photoluminescence intensity changes in response to membrane potential (MP) changes. Organic voltage nanosensors based on polystyrene beads and nanodisk technology utilize Fluorescence (Förster) Resonance Energy Transfer (FRET) to sense local electric fields. Voltage sensing FRET pairs achieve voltage sensitivity up to ∼35% ΔF/F per 120 mV in cultures. Non-invasive MP recording from individual targeted sites (synapses and spines) with nanodisks has been realized. However, both of these QCSE- and FRET-based voltage nanosensors yet need to reach the milestone of recording individual action potentials from individual targeted sites.

Funder

Reforming and Enhancing the European Research and Innovation System

Human Frontier Science Program

Defense Advanced Research Projects Agency

Biological and Environmental Research

STROBE National Science Foundation Science and Technology Center

National Institutes of Health

United States-Israel Binational Science Foundation

Israel Science Foundation

Bar-Ilan Research & Development Co., Israel Innovation Authority

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3