Hydrodynamic performance of shallow-water waveguides subject to nonlinear waves

Author:

Cen Yuhao1ORCID,Liang Dongfang1ORCID,Cheng Qian1ORCID,Liu Xiaodong2ORCID,Zou Siyuan3ORCID

Affiliation:

1. Department of Engineering, University of Cambridge 1 , Cambridge CB2 1PZ, United Kingdom

2. College of Ocean Science and Engineering, Shandong University of Science and Technology 2 , Qingdao 266590, China

3. College of Civil Engineering and Architecture, Zhejiang University 3 , Hangzhou 310058, China

Abstract

The idea of water wave control for ease of shipping or energy exploitation has been the subject of extensive research. Yet, most studies are limited to two-dimensional simulations focusing primarily on transformations of small-amplitude linear waves. This paper presents a theoretical and numerical investigation of the hydrodynamic performance of a type of shallow-water waveguides. The concept of an effective refractive index for water waves is proposed through analogy with electromagnetic waves, based on which the wave-controlling mechanism is explained. The precise wave field is revealed using computational fluid dynamics simulations. The numerical model is validated by comparing the numerical predictions with experimental data. Subsequently, the nonlinear wave fields around the waveguide are systematically studied by increasing the incident wave height. The numerical results confirm the significant increase in the wave height above the waveguide platform, as a result of wave refraction and reflection. Such an amplification effect slightly reduces as the nonlinearity of the incident wave increases.

Funder

Tsinghua University - University of Cmabridge Joint Research Initiative

China Scholarship Council

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3