In situ measurement of spectral linewidth in wavelength-modulated signals for frequency-modulated continuous-wave LiDAR systems

Author:

La Jongpil1ORCID,Han Munhyun2ORCID,Choi Jieun1ORCID,Mheen Bongki2

Affiliation:

1. Lambda InnoVision Co. Ltd. 1 , Hwasung City, Republic of Korea

2. Photonic Convergence Components Research Section, Photonic/Wireless Devices Research Division, Terrestrial and Non-Terrestrial Integrated Telecommunications Research Laboratory, Electronics and Telecommunications Research Institute 2 , 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea

Abstract

This paper advances an in situ method to measure the spectral linewidth directly from the currently generated wavelength-modulated signals in frequency-modulated continuous-wave (FMCW) light detection and ranging (LiDAR) systems, diverging from traditional methods that focus on the linewidth of the original unmodulated laser source. Our approach, employing a self-heterodyne technique with a short-delay line, specifically targets the modulated signal’s linewidth in real-time, which is vital for the operational fidelity of FMCW LiDAR systems. Crucially, our method leverages the unique capabilities of an optical hybrid for accurate phase noise and linewidth measurements, distinguishing it from conventional beat frequency extraction techniques. For the evaluation of the spectral linewidth measurement, a frequency-modulated laser source based on an optical phase-locked loop configuration was first described where the laser achieves linear optical frequency modulation by controlling the injection current of an external cavity diode laser (ECDL). The phase error measured from a Mach–Zehnder interferometer signal is used to detect the frequency deviation error from the target value, which is then fed back to the driving current of the ECDL to compensate it. Utilizing the proposed method, the laser’s linewidth for the fabricated FMCW LiDAR was measured to be 287 kHz, exhibiting a clear Lorentzian spectrum shape, where the spectral modulation bandwidth and sweep time were 2.91 GHz and 50 µs, respectively. The results clearly demonstrate that the proposed in situ spectral linewidth measurement provides an efficient method for performance monitoring of FMCW LiDAR.

Funder

Ministry of Trade, Industry and Energy

Electronics and Telecommunications Research Institute

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3