Affiliation:
1. Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130-4862, USA
Abstract
Photodetachment spectra of anionic species provide significant insights into the energies and nature of ground and excited states of both the anion and resultant neutral molecules. Direct detachment of the excess electron to the continuum may occur via formally allowed or forbidden transitions (perhaps as the result of intensity borrowing through vibronic coupling). However, alternate indirect pathways are also possible and often overlooked. Here, we report a two-dimensional photoelectron spectral study, combined with correlated electronic structure calculations, to elucidate the nature of photodetachment from NiO2−. The spectra are comprised of allowed and forbidden transitions, in excellent agreement with previously reported slow electron velocity mapped imaging spectra of the same system, which were interpreted in terms of direct detachment. In the current work, the contributions of indirect processes are revealed. Measured oscillations in the branching ratios of the spectral channels clearly indicate non-direct detachment processes, and the electronic structure calculations suggest that excited states of the appropriate symmetry and degeneracy lie slightly above the neutral ground state. Taken together, the results suggest that the origin of the observed forbidden transitions is the result of anion excited states mediating the electron detachment process.
Funder
National Science Foundation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献