Measurement and modeling of strain waves in germanium induced by ultrafast laser pulses

Author:

Aagaard Martin1ORCID,Julsgaard Brian1ORCID

Affiliation:

1. Department of Physics and Astronomy, Aarhus University , Ny Munkegade 120, DK-8000 Aarhus C, Denmark

Abstract

Transient reflectivity measurements are used to probe the strain waves induced by ultrashort laser pulses in bulk [100] germanium. The measurement signals are compared to purely analytical model functions based on the known material parameters for germanium. The modeling includes (i) a derivation of analytical solutions to the wave equation for strain waves coupled to the diffusion equation for heat and charge carriers and (ii) an expression for the impact on reflection coefficients that are caused by perturbations to the dielectric function but extended to cover a non-isotropic, uniaxial dielectric tensorial form. The model is held up against transient reflectivity measurements with an s- and a p-polarized probe and with a probe wavelength in the range of 502–710 nm. Excellent agreement is found when comparing the oscillatory shape of the measurement signals to the models. As for the magnitude of the oscillations, the models reproduce the overall trends of the experiment when using the previously published values for the elasto-optical tensor measured under static strain.

Funder

Novo Nordisk Fonden

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3