Hybrid integrated external cavity laser with a 172-nm tuning range

Author:

Guo Yuyao1ORCID,Li Xinhang1,Jin Minhui1,Lu Liangjun12ORCID,Xie Jingya3,Chen Jianping12,Zhou Linjie12ORCID

Affiliation:

1. State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Institute for Advanced Communication and Data Science, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. SJTU-Pinghu Institute of Intelligent Optoelectronics, Jiaxing, Zhejiang 314200, China

3. Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China

Abstract

Chip-scale lasers with a wide tunable range and a narrow linewidth have rich applications in optical communications, sensing, and light detection and ranging systems. External cavity lasers (ECLs) have the advantage of a wide tuning range and a narrow linewidth compared with their counterparts such as distributed feedback lasers and distributed Bragg reflector lasers because the passive filter separated from the gain section can be widely tuned and the low-loss external cavity extends the photon lifetime. However, so far, the tuning range achieved by the chip-scale ECLs is in the range of 80–120 nm, smaller than that of the bulk free-space ECL (typically >160 nm). The bottleneck in reaching an ultrabroad tuning range for chip-scale ECLs lies in the unsuppressed side modes of the external cavity. Here, we demonstrate a hybrid-integrated ECL consisting of a broadband III–V reflective semiconductor optical amplifier and a low-loss Si3N4 wavelength-selective reflector. A record 172-nm lasing wavelength tuning range together with a more than 40 dB side-mode suppression ratio is achieved beyond the free spectral range of the Vernier ring filter due to the enhanced lasing mode selection from a tunable Sagnac loop reflector. The Si3N4 platform enables a low-loss external cavity, facilitating laser linewidth reduction below 4 kHz over the full tuning range. The on-chip output power reaches 26.7 mW at a wavelength of 1550 nm.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Zhejiang Provincial Major Research and Development Program

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3