Investigating the influence of substrate orientation and temperature on Cu cluster deposition

Author:

He Yiwen1ORCID,Zhang Shixu12ORCID,Zheng Zhijun1ORCID,Li Gongping12ORCID

Affiliation:

1. School of Nuclear Science and Technology, Lanzhou University 1 , Lanzhou 730000, China

2. Laboratory of Advanced Nuclear Materials, Institute of Modern Physics, Chinese Academy of Sciences 2 , Lanzhou 730000, China

Abstract

The crystal orientation and the temperature of the substrate are crucial factors that influence clusters deposition and, consequently, the properties of thin films. In this study, the molecular dynamics simulation method was employed to investigate the deposition of Cu55 clusters on Fe(001), Fe(011), and Fe(111) substrates with varying crystal orientations. The incident energies used ranged from 0.1 to 20.0 eV/atom, and the substrates were maintained at temperatures of 300, 500, and 800 K. Analysis of cluster and substrate atom snapshots, along with the physical properties of clusters, revealed how the crystal orientation of Fe substrates affects the morphology and structure of the cluster at different temperatures. Additionally, specific microscopic mechanisms responsible for these effects were identified. The simulation results demonstrate that the crystal orientation of Fe substrate significantly influences the deposition of Cu55 clusters. The structures of the clusters on the three crystal substrates undergo similar changes as the substrate temperature increases, with the Cu55 clusters on the Fe(111) substrate exhibiting the most significant changes in response to the temperature rise.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3