Research on the forming and demolding process of shape memory self-demolding mold

Author:

Wang Miao1ORCID,Zhang Zhenming1

Affiliation:

1. School of Mechanical Engineering, Northwestern Polytechnical University , Youyi West Road 127, 710072 Xi’an, China

Abstract

The molding method is highly anticipated in engineering fields and has been preliminarily applied. However, traditional demolding methods introduce subtle deviations in demolding direction, leading to demolding defects and reduced forming accuracy. To address this, we developed an innovative Shape Memory Polymer (SMP) mold. Through finite element simulation, we extensively investigated the effects of diaminodiphenylmethane (DDM) addition, temperature, and load on the template forming and shape recovery processes. Finally, we experimentally verified the feasibility of the self-demolding of the template. The findings demonstrate that as the amount of DDM added increases, the glass transition temperature of SMP progressively elevates. This can be attributed to the enhanced crosslinking triggered by the addition of DDM. Consequently, during the stage of preserving shape in mold formation, SMP exhibits a heightened storage modulus and diminished shape recovery. Notably, when 1.5 g of DDM is added, the shape memory template exhibits the least shape recovery, with a shape retention rate of 78.2%. Conversely, employing 1.6 g of DDM generates the highest shape recovery but only achieves a shape retention rate of 59.5%. Augmenting the amount of DDM is advantageous in accomplishing template demolding. Higher temperatures expedite the initiation of the shape recovery process, facilitating template demolding during the shape recovery stage. Moreover, increasing the load can minimize template rebound and enhance the precision of mold formation. However, it also intensifies the complexity of self-demolding. Consequently, it is imperative to sensibly determine and implement suitable process parameters in applications.

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3