A multiscale 3D hotspot-rich nanostructured substrate for biomolecular detection of SARS-CoV-2

Author:

Sahoo Smruti R.12ORCID,Huang Chun-Ta3ORCID,Tsai Kunju4ORCID,Wang Gou-Jen25ORCID,Chang Cheng-Chung15ORCID

Affiliation:

1. Intelligent Minimally-Invasive Device Center, National Chung Hsing University 1 , Taichung 402, Taiwan

2. Department of Mechanical Engineering, National Chung-Hsing University 2 , Taichung 40227, Taiwan

3. Protrustech Co., Ltd. 3 , 3F.-1, No. 293, Sec. 3, Dongmen Rd. East District, Tainan City 701, Taiwan

4. Nanovie Co., Ltd. 4 , Taichung 41107, Taiwan

5. Graduate Institute of Biomedical Engineering, National Chung Hsing University 5 , Taichung 402, Taiwan

Abstract

The current fabrication methods of surface-enhanced Raman scattering (SERS) chips used for biological detection mostly require antibodies conjugated on nanostructured metals or additionally connected to a reporter, which leads to complicated fabrication processes and increases the cost of these chips. More importantly, only a single-layer (2D) signal source is generated on the substrate of the chip, resulting in poor sensitivity. Herein, we constructed a single-component, multiscale, three-dimensional SERS (M3D-SERS) substrate from silver nanowires (AgNWs) packing. According to our results, the Raman enhancement effect of the M3D-SERS substrate was related to the degree of AgNWs stacking along the z axis. In addition, the light source-dependent plasmonic partition and hotspot formation of the M3D-SERS substrate were evaluated by the finite integration technique to prove that M3D-SERS offers advantages, with isotropic localized surface plasmon resonance as well as homogeneous hotspot distribution, for SERS over its 1D and 2D counterparts. Experimentally, the optimal construction of the M3D-SERS chip was explored and established based on the Raman signal enhancement of bovine serum albumin, and consequently, the efficiency of the M3D-SERS chip in detecting SARS-CoV-2-related biomolecules was investigated based on the detection superiority to biomolecules. This study demonstrates a simple, label-free, pre-treatment-free potential biosensor technology that can be used in healthcare units. Furthermore, in combination with a suitable laser light source, this technology can be applied for efficient detection in point-of-care tests with a handheld spectrometer.

Funder

National Science and Technology Council

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3