Predicting shear stress distribution on structural surfaces under internal solitary wave loading: A deep learning perspective

Author:

Zhang MiaoORCID,Hu HaibaoORCID,Guo BinbinORCID,Liang Qianyong,Zhang FanORCID,Chen XiaopengORCID,Xie ZhongliangORCID,Du PengORCID

Abstract

The density of the ocean varies unevenly along the vertical axis. In the presence of external disturbances, internal solitary waves (ISWs) are generated. The strong shear flow field induced by ISW seriously threatens the operational safety of marine structures. Therefore, it has become a hot spot to study the force law of marine structures in ISW. The existing studies are conducted when the ISW parameters are known. However, ISW is not visible in real situations, which leads to difficulties in obtaining ISW parameters. Therefore, it is of great engineering value to accomplish real-time force prediction of marine structures without knowing the ISW parameters in advance. To fill the gap, this study proposes a novel hydrodynamic prediction model with a sensor array as the sensing system and a deep learning algorithm as the decision-making system. The model successfully achieves accurate prediction of the shear stress on the cylinder in the ISW. In addition, a technique for optimizing sensor placement is proposed. This will help identify critical regions in the graphical representations to enhance exploration of flow field information. The results demonstrate that the prediction accuracy of the optimized sensor layout scheme surpasses that of randomly deployed sensors. As a result, this study will provide an important assurance for the safe operation of marine structures.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Innovation Foundation for Doctoral Dissertation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3