Automatic JOREK calibration via batch Bayesian optimization

Author:

Crovini E.1ORCID,Pamela S. J. P.2ORCID,Duncan A. B.13ORCID,

Affiliation:

1. Department of Mathematics, Imperial College London 1 , London SW7 2BX, United Kingdom

2. CCFE, Culham Science Centre 2 , Abingdon OX14 3EB, United Kingdom

3. Alan Turing Institute 3 , London NW1 2DB, United Kingdom

Abstract

Aligning pedestal models and associated magnetohydrodynamic codes with experimental data is an important challenge in order to be able to generate predictions for future devices, e.g., ITER. Previous efforts to perform calibration of unknown model parameters have largely been a manual process. In this paper, we construct a framework for the automatic calibration of JOREK. More formally, we reformulate the calibration problem into a black-box optimization task, by defining a measure of the discrepancy between an experiment and a reference quantity. As this discrepancy relies on JOREK simulations, the objective becomes computationally intensive and, hence, we resort to batch Bayesian optimization methodology to allow for efficient, gradient-free optimization. We apply this methodology to two different test cases with different discrepancies and show that the calibration is achievable.

Funder

EUROfusion

UK Research and Innovation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3