Detection of fortunate molecules induce particle resolution shift (PAR-shift) toward single-molecule limit in SMLM: A technique for resolving molecular clusters in cellular system

Author:

S Aravinth1,Joshi Prakash1,Mondal Partha Pratim1ORCID

Affiliation:

1. Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India

Abstract

Molecules capable of emitting a large number of photons (also known as fortunate molecules) are crucial for achieving a resolution close to single molecule limit (the actual size of a single molecule). We propose a long-exposure single molecule localization microscopy (leSMLM) technique that enables detection of fortunate molecules, which is based on the fact that detecting a relatively small subset of molecules with large photon emission increases its localization precision [Formula: see text]. Fortunate molecules have the ability to emit a large burst of photons over a prolonged time ([Formula: see text] average blinking lifetime). So, a long exposure time allows the time window necessary to detect these elite molecules. The technique involves the detection of fortunate molecules to generate enough statistics for a quality reconstruction of the target protein distribution in a cellular system. Studies show a significant PArticle Resolution Shift (PAR-shift) of about 6 and 11 nm toward single-molecule-limit (far from diffraction-limit) for an exposure time window of 60 and 90 ms, respectively. In addition, a significant decrease in the fraction of fortunate molecules (single molecules with small localization precision) is observed. Specifically, 8.33% and 3.43% molecules are found to emit in 30–60  ms and >60 ms, respectively, when compared to single molecule localization microscopy (SMLM). The long exposure has enabled better visualization of the Dendra2HA molecular cluster, resolving sub-clusters within a large cluster. Thus, the proposed technique leSMLM facilitates a better study of cluster formation in fixed samples. Overall, leSMLM technique offers a spatial resolution improvement of ~ 10 nm compared to traditional SMLM at the cost of marginally poor temporal resolution.

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3