Electronic band structure of superconducting KTaO3 (111) interfaces

Author:

Mallik Srijani1ORCID,Göbel Börge2ORCID,Witt Hugo13ORCID,Vicente-Arche Luis M.1ORCID,Varotto Sara1,Bréhin Julien1ORCID,Ménard Gerbold3ORCID,Saïz Guilhem3,Tamsaout Dyhia1,Santander-Syro Andrés Felipe4ORCID,Fortuna Franck4ORCID,Bertran François5ORCID,Le Fèvre Patrick5ORCID,Rault Julien5ORCID,Boventer Isabella1ORCID,Mertig Ingrid2ORCID,Barthélémy Agnès1ORCID,Bergeal Nicolas3ORCID,Johansson Annika6ORCID,Bibes Manuel1ORCID

Affiliation:

1. Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay 1 , 91767 Palaiseau, France

2. Institut für Physik, Martin-Luther-Universität Halle-Wittenberg 2 , 06099 Halle, Germany

3. Laboratoire de Physique et d’Etude des Matériaux, ESPCI Paris, Université PSL, CNRS 3 , 75005 Paris, France

4. Institut des Sciences Moléculaires d’Orsay, CNRS, Université Paris-Saclay 4 , 91405 Orsay, France

5. SOLEIL Synchrotron 5 , L’Orme des Merisiers, Départementale 128, F-91190 Saint-Aubin, France

6. Max Planck Institute of Microstructure Physics 6 , Weinberg 2, 06120 Halle, Germany

Abstract

Two-dimensional electron gases (2DEGs) based on KTaO3 are emerging as a promising platform for spin-orbitronics due to their high Rashba spin–orbit coupling (SOC) and gate-voltage tunability. The recent discovery of a superconducting state in KTaO3 2DEGs now expands their potential towards topological superconductivity. Although the band structure of KTaO3 surfaces of various crystallographic orientations has already been mapped using angle-resolved photoemission spectroscopy (ARPES), this is not the case for superconducting KTaO3 2DEGs. Here, we reveal the electronic structure of superconducting 2DEGs based on KTaO3 (111) single crystals through ARPES measurements. We fit the data with a tight-binding model and compute the associated spin textures to bring insight into the SOC-driven physics of this fascinating system.

Funder

Agence Nationale de la Recherche

European Research Council

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3