Deep Learning for chaos detection

Author:

Barrio Roberto1ORCID,Lozano Álvaro2ORCID,Mayora-Cebollero Ana1ORCID,Mayora-Cebollero Carmen1ORCID,Miguel Antonio3ORCID,Ortega Alfonso3ORCID,Serrano Sergio1ORCID,Vigara Rubén1ORCID

Affiliation:

1. Departamento de Matemática Aplicada and IUMA, Computational Dynamics group, Universidad de Zaragoza 1 , Zaragoza E-50009, Spain

2. Departamento de Matemáticas and IUMA, Computational Dynamics group, Universidad de Zaragoza 2 , Zaragoza E-50009, Spain

3. Departamento de Ingeniería Electrónica y Comunicaciones, ViVoLab, Aragón Institute for Engineering Research (I3A), University of Zaragoza 3 , Zaragoza E-50018, Spain

Abstract

In this article, we study how a chaos detection problem can be solved using Deep Learning techniques. We consider two classical test examples: the Logistic map as a discrete dynamical system and the Lorenz system as a continuous dynamical system. We train three types of artificial neural networks (multi-layer perceptron, convolutional neural network, and long short-term memory cell) to classify time series from the mentioned systems into regular or chaotic. This approach allows us to study biparametric and triparametric regions in the Lorenz system due to their low computational cost compared to traditional techniques.

Funder

Ministerio de Ciencia e Innovación

Gobierno de Aragón

Ministerio de Universidades, Spain

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference21 articles.

1. A three-parametric study of the Lorenz model;Physica D,2007

2. Bounds for the chaotic region in the Lorenz model;Physica D,2009

3. Classification of chaotic time series with deep learning;Physica D,2020

4. Chaotic dynamics of a magnetic nanoparticle;Phys. Rev. E,2011

5. M. M. Bronstein , J.Bruna, T.Cohen, and P.Veličković, “Geometric deep learning: Grids, groups, graphs, geodesics, and gauges,” arXiv:2104.13478 (2021).

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3