Cryogenic cold energy recovery in liquid hydrogen refueling station with double-pipe heat exchanger

Author:

Hu Rongze1ORCID,Yang Bin1ORCID,Shi Cunyang2ORCID,Xue Mingzhe2ORCID,Zhu Shaowei13ORCID

Affiliation:

1. Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Tongji University 1 , 4800, Cao'an Road, Shanghai 201804, China

2. Clean Energy Automotive Engineering Center, School of Automotive Studies, Tongji University 2 , 4800, Cao'an Road, Shanghai 201804, China

3. Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Tongji University 3 , 4800, Cao'an Road, Shanghai 201804, China

Abstract

Recovering the cryogenic cold energy of liquid hydrogen (LH2) for precooling high-pressure hydrogen gas before refueling can significantly reduce the electricity and energy consumption of liquid hydrogen refueling stations. Existing methods, such as blending, require continuous cryogenic pump operation and are not suitable for various operating conditions. This work proposes a novel method to recover LH2 cryogenic cold energy using a double-pipe heat exchanger, which can decouple the compression and refueling process and meet the fluctuating demand for the cryogenic cold energy required by the hydrogen dispenser. The lumped parameter method and temperature partition method were adopted to design the heat exchanger structure. Numerical simulations of a 2D axisymmetric swirl model were done to verify the accuracy of the temperature partition method applied to high-pressure cryogenic hydrogen. Due to the low temperature of LH2, the secondary refrigerant dichloromethane (CH2Cl2) risks freezing. Comparing the outer wall surface temperature of the inner pipe with the CH2Cl2 freezing point temperature, the optimal anti-freezing condition is that the outer pipe nominal diameter should be selected as 0.032 m and CH2Cl2 mass flow rate should be at least 1.72 kg s−1. Recovery efficiency can reach over 75.39% without freezing.

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3