Time-resolved structural dynamics of the out-of-equilibrium charge density wave phase transition in GdTe3

Author:

Gonzalez-Vallejo I.12ORCID,Jacques V. L. R.1,Boschetto D.2ORCID,Rizza G.3,Hadj-Azzem A.4,Faure J.2ORCID,Le Bolloc'h D.1

Affiliation:

1. LPS, Université Paris Saclay, CNRS, Orsay, France

2. LOA, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France

3. LSI, Institut Polytechnique de Paris, CEA/DRF/IRAMIS, CNRS, Ecole polytechnique, Route de Saclay, Palaiseau, France

4. Institut Néel, CNRS, 38042 Grenoble, France

Abstract

We use ultrafast electron diffraction to study the out-of-equilibrium dynamics of the charge density wave (CDW) phase transition in GdTe3, a quasi-two-dimensional compound displaying a unidirectional CDW state. Experiments were conducted at different incident fluences and different initial sample temperatures below T c. We find that following photo-excitation, the system undergoes a non-thermal ultrafast phase transition that occurs in out-of-equilibrium conditions. The intrinsic crystal temperature was estimated at each time delay from the atomic thermal motion, which affects each Bragg peak intensity via the Debye Waller factor. We find that the crystal temperature stabilizes with a 6 ps timescale in a quasi-equilibrium state at temperature [Formula: see text]. We then relate the recovery time of the CDW and its correlation lengths as a function of [Formula: see text]. The charge density wave is suppressed in less than a picosecond while its recovery time increases linearly with incident fluence and initial temperature. Our results highlight that the dynamics is strongly determined by the initial sample temperature. In addition, the transient CDW phase recently observed along the transverse direction in LaTe3 and CeTe3 is not observed in GdTe3.

Funder

European Research Council, ERC Starting Grant FEMTOELEC

Laboratoire d'excellence Physique Atomes Lumière Matière

Laserlab-Europe

Publisher

AIP Publishing

Subject

Spectroscopy,Condensed Matter Physics,Instrumentation,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3