Using a multistate mapping approach to surface hopping to predict the ultrafast electron diffraction signal of gas-phase cyclobutanone

Author:

Hutton Lewis1ORCID,Moreno Carrascosa Andrés1ORCID,Prentice Andrew W.2ORCID,Simmermacher Mats1ORCID,Runeson Johan E.1ORCID,Paterson Martin J.2ORCID,Kirrander Adam1ORCID

Affiliation:

1. Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford 1 , Oxford OX1 3QZ, United Kingdom

2. Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University 2 , Edinburgh EH14 4AS, United Kingdom

Abstract

Using the recently developed multistate mapping approach to surface hopping (multistate MASH) method combined with SA(3)-CASSCF(12,12)/aug-cc-pVDZ electronic structure calculations, the gas-phase isotropic ultrafast electron diffraction (UED) of cyclobutanone is predicted and analyzed. After excitation into the n-3s Rydberg state (S2), cyclobutanone can relax through two S2/S1 conical intersections, one characterized by compression of the CO bond and the other by dissociation of the α–CC bond. Subsequent transfer into the ground state (S0) is then achieved via two additional S1/S0 conical intersections that lead to three reaction pathways: α ring-opening, ethene/ketene production, and CO liberation. The isotropic gas-phase UED signal is predicted from the multistate MASH simulations, allowing for a direct comparison to the experimental data. This work, which is a contribution to the cyclobutanone prediction challenge, facilitates the identification of the main photoproducts in the UED signal and thereby emphasizes the importance of dynamics simulations for the interpretation of ultrafast experiments.

Funder

Leverhulme Trust

Engineering and Physical Sciences Research Council

U.S. Department of Energy

Swiss National Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3