Affiliation:
1. Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, USA
Abstract
A much-needed solution for the efficient modeling of strong coupling between matter and optical cavity modes is offered by mean-field mixed quantum–classical dynamics, where a classical cavity field interacts self-consistently with quantum states of matter through Ehrenfest’s theorem. We previously introduced a modified mean-field approach, referred to as decoupled mean-field (DC-MF) dynamics, wherein vacuum fluctuations of the cavity field are decoupled from the quantum-mechanical ground state as a means to resolve an unphysical drawing of energy from the vacuum fluctuations by a two-level atom. Here, we generalize DC-MF dynamics for an arbitrary number of (nondegenerate) atomic levels and show that it resolves an unphysical lack of emission from a three-level atom predicted by conventional mean-field dynamics. We furthermore show DC-MF to provide an improved description of reabsorption and (resonant) two-photon emission processes.
Funder
National Science Foundation
Materials Research Science and Engineering Center, Northwestern University
International Institute for Nanotechnology, Northwestern University
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Quantum to Classical Cavity Chemistry Electrodynamics;The Journal of Physical Chemistry Letters;2023-12-19