Efficient surrogate-assisted importance sampling for rare event assessment in probabilistic power flow

Author:

Wang Chenxu12ORCID,Zhou Yixi3,Peng Yan1ORCID,Xuan Xiaohua1,Gan Deqiang2,Ma Junchao1

Affiliation:

1. Electric Power Research Institute of State Grid Zhejiang Electric Power Corporation 1 , Hangzhou 310014, China

2. College of Electrical Engineering, Zhejiang University 2 , Hangzhou 310027, China

3. State Grid Hangzhou Electric Power Supply Company 3 , Hangzhou 310016, China

Abstract

In recent years, the increasing integration of renewable energy and electric vehicles has exacerbated uncertainties in power systems. Operators are interested in identifying potential violation events such as overvoltage and overload via probabilistic power flow calculations. Evaluating the violation probabilities requires sufficient accuracy in tail regions of the output distributions. However, the conventional Monte Carlo simulation and importance sampling typically require numerous samples to achieve the desired accuracy. The required power flow simulations result in substantial computational burdens. This study addresses this challenge by proposing a surrogate-assisted importance sampling method. Specifically, a high-fidelity radial basis function-based surrogate is constructed to approximate the nonlinear power flow model. Subsequently, the surrogate is embedded in the conventional importance sampling technique to evaluate the rare probabilities with high efficiency and reasonable accuracy. The computational strengths of the proposed method are validated in the IEEE 14-bus, 118-bus, and realistic 736-bus systems through comparisons with several well-developed methods. The comparisons provide a reference for system operators to select the appropriate method for evaluating violations based on the intended applications.

Funder

State Grid Corporation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3