Machine learning for modern power distribution systems: Progress and perspectives

Author:

Marković Marija12ORCID,Bossart Matthew12ORCID,Hodge Bri-Mathias1234ORCID

Affiliation:

1. Electrical, Electrical, Computer and Energy Engineering Department, University of Colorado Boulder 1 , Boulder, Colorado 80309, USA

2. Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder 2 , Boulder, Colorado 80303, USA

3. Department of Applied Mathematics, University of Colorado Boulder 3 , Boulder, Colorado 80309, USA

4. Grid Planning and Analysis Center, National Renewable Energy Laboratory (NREL) 4 , Golden, Colorado 80401, USA

Abstract

The application of machine learning (ML) to power and energy systems (PES) is being researched at an astounding rate, resulting in a significant number of recent additions to the literature. As the infrastructure of electric power systems evolves, so does interest in deploying ML techniques to PES. However, despite growing interest, the limited number of reported real-world applications suggests that the gap between research and practice is yet to be fully bridged. To help highlight areas where this gap could be narrowed, this article discusses the challenges and opportunities in developing and adapting ML techniques for modern electric power systems, with a particular focus on power distribution systems. These systems play a crucial role in transforming the electric power sector and accommodating emerging distributed technologies to mitigate the impacts of climate change and accelerate the transition to a sustainable energy future. The objective of this article is not to provide an exhaustive overview of the state-of-the-art in the literature, but rather to make the topic accessible to readers with an engineering or computer science background and an interest in the field of ML for PES, thereby encouraging cross-disciplinary research in this rapidly developing field. To this end, the article discusses the ways in which ML can contribute to addressing the evolving operational challenges facing power distribution systems and identifies relevant application areas that exemplify the potential for ML to make near-term contributions. At the same time, key considerations for the practical implementation of ML in power distribution systems are discussed, along with suggestions for several potential future directions.

Funder

U.S. Department of Energy

Climate Change AI Innvation Grants

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3