Affiliation:
1. Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract
Multiplexing multiple orbital angular momentum (OAM) modes of light has proven to be an effective way to increase data capacity in fiber-optic communications. However, existing techniques for distributing the OAM modes rely on specially designed fibers or couplers. Direct transmission of multiplexed OAM modes through a long standard multimode fiber remains challenging because the strong mode coupling in fibers disables OAM demultiplexing. Here, we propose a deep-learning-based approach to recover the scattered data from multiplexed OAM channels without measuring any phase information. Over a 1-km-long standard multimode fiber, our method is able to identify different OAM modes with an accuracy of more than 99.9% in the parallel demultiplexing of 24 scattered OAM channels. To demonstrate the transmission quality, color images are encoded in multiplexed twisted light and our method achieves decoding the transmitted data with an error rate of 0.13%. Our work shows that the artificial intelligence algorithm could benefit the use of OAM multiplexing in commercial fiber networks and high-performance optical communication in turbulent environments.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Hefei Municipal National Science Foundation
China Postdoctoral Science Foundation
Subject
Physics and Astronomy (miscellaneous)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献