The role of intermolecular interactions on melt memory and thermal fractionation of semicrystalline polymers

Author:

Sangroniz Leire12ORCID,Jang Yoon-Jung1ORCID,Hillmyer Marc A.1ORCID,Müller Alejandro J.23ORCID

Affiliation:

1. Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA

2. POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain

3. IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain

Abstract

The origin of melt memory effects associated with semicrystalline polymers and the physical parameters involved in this process have been widely studied in the literature. However, a comprehensive understanding of the role of intermolecular interactions on melt memory is still being developed. For this purpose, we have considered aliphatic polyesters and we have incorporated amide and additional ester groups. Inserting these additional functional groups, the strength of the intermolecular interactions increases widening the melt memory effect. Not only the presence of the functional groups but also the position of these groups in the repeating unit plays a role in the melt memory effect as it impacts the strength of the intermolecular interactions in the crystals. The study of the effect of intermolecular interactions has been extended to successive self-nucleation and annealing thermal fractionation experiments to explore for the first time the role of intermolecular forces on the fractionation capacity of linear polymers. We demonstrated that intermolecular interactions act as intrinsic defects interrupting the crystallizable chain length, thus facilitating thermal fractionation. Overall, this work sheds light on the role of intermolecular interactions on the crystallization behavior of a series of aliphatic polyesters.

Funder

Center for Sustainable Polymers, National Science Foundation

Basque Government

Spanish Government

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3