Hydroxypyridinate-bridged paddlewheel-type dirhodium complex as a catalyst for photochemical and electrochemical hydrogen evolution

Author:

Kataoka Yusuke1ORCID,Sato Kozo1,Yano Natsumi1ORCID

Affiliation:

1. Department of Chemistry, Natural Science of Technology, Shimane University , 1060, Nishikawatsu, Matsue, Shimane 690-8504, Japan

Abstract

Electrochemical and photochemical hydrogen (H2) evolution activities of a 6-fluoro-2-hydroxypyridinate (fhp−)-bridged paddlewheel-type dirhodium (Rh2) complex, [Rh2(fhp)4], were investigated through experimental and theoretical approaches. In DMF, the [Rh2(fhp)4] underwent a one-electron reduction (assigned to Rh24+/3+) at −1.31 V vs SCE in the cathodic region. Adding trifluoroacetic acid as a proton source to the electrochemical cell containing [Rh2(fhp)4], the significant catalytic current, i.e., electrochemical H2 evolution, was observed; the turnover frequency and overpotential of electrochemical H2 evolution were 18 244 s−1 and 732 mV, respectively. The reaction mechanism of electrochemical H2 evolution catalyzed by [Rh2(fhp)4] in DMF was examined in detail by theoretically predicting the redox potentials and pKa values of the reaction intermediates using density functional theory calculations. The calculations revealed that (i) the formation of a one-electron reduced species, [Rh2(fhp)4]−, triggered for H2 evolution and (ii) the protonation and reduction processes of [Rh2(fhp)4]− to further reduced hydride intermediates proceeded directly via a concerted proton–electron transfer mechanism. Moreover, [Rh2(fhp)4] was shown to be a highly efficient H2 evolution catalyst (HEC) for photochemical proton reduction reactions when combined with an artificial photosynthetic (AP) system containing [Ir(ppy)2(dtbbpy)]PF6 and triethylamine, which served as a photosensitizer and a sacrificial electron donor, respectively. Under visible light irradiation, the total amount of H2 evolved and its turnover number (per Rh ion) were 1361.0 µmol and 13 610, respectively, which are superior to those of previously reported AP systems with rhodium complexes as HEC.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3